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Abstract

One of the characteristics of chaotic systems is their sensitivity to the initial
conditions. As a result, time-series data that become chaotic can be predicted over
the short term, but not over the long term. This research considers the e®ect of errors
in the parameters of a chaotic system. A genetic algorithm was used to estimate these
parameters, and the resulting error in time-series predictions given by the chaotic
system was examined.

1 Introduction

One of the well-known characteristics of chaotic systems is their sensitive depen-
dency to initial conditions [1]. As a result, it is possible to make predictions over the
short term, but not over the long term for chaotic time-series data. In contrast, there
are few studies that show the e®ects of parameter estimation errors in equations repre-
senting chaotic systems, on the resulting prediction errors in chaotic time-series. The
Du±ng equation may be used to express the equation of motion with a single degree
of freedom, if the nonlinearity of the restoring term cannot be ignored. Ueda [4, 5, 6]
showed that the time-series solution given by the Du±ng equation becomes chaotic
depending on the parameters taken. In this study, we attempted to estimate param-
eters by using the genetic algorithm proposed by Ueno et al.[7], in cases where the
time-series solutions given by the Du±ng equation become chaotic. In addition, we
numerically solved the Du±ng equation possessing the estimated parameters, made
predictions, and considered the e®ects of parameter estimation errors on prediction
error.

2 Data Used for Parameter Estimation

The ¯rst data used for parameter estimation was the numerical solution of the
following di®erential equation, obtained by the Runge-Kutta fourth-order method.
The other is data with added noise, as described later. In the Runge-Kutta method,
the time interval was set to 1:0 £ 10¡5[sec] when calculating the Poincar¶e section,
and 1:0£ 10¡2 [sec] for all other cases[3]. We assumed the initial condition, Á(0) =
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Fig. 1: Phase diagram of Ueda model.

0; dÁ
dt
jt=0 = 0. We referenced the study by Kan and Taguchi [2] for parameter set-

tings. For the rest of this study, we refer to the model represented by the following
di®erential equation as the 'Ueda model.' Fig.1 shows the phase diagram of the Ueda
model. Fig.2 shows the Poincar¶e section of the Ueda model.

d2Á

dt2
+ b1

dÁ

dt
+ c1Á+ c3Á

3 = P cos!t (2.1)

b1 = 0:1; c1 = 1; c3 = 1; P = 60; ! = 2

As described above, we used two sets of data for parameter estimation. The ¯rst
does not contain noise (See Fig.3). We hereinafter refer to this data as Data-1, or true
value. The second is the true value (Data-1) with added white noise (See Fig.4). We
hereinafter refer to this data containing noise as Data-2. Fig.5 shows the time-series
data of this added white noise. Fig.6 shows the power spectral density function of
this white noise. We used the genetic algorithm to carry out parameter estimations
from the data in the 0-20 [sec] interval, for Data-1 and Data-2 (See Figs. 3 and 4)[7].

3 Results and Analysis

3.1 Estimation of Parameters

Table 1 shows the parameters estimated from time-series data not containing noise
(Data-1), while Table 2 shows the parameters estimated from time-series data con-
taining noise (Data-2). Based on the estimated parameters, we numerically solved
the di®erential equation of the Ueda model; Fig.7 and Fig.8 show the calculated
results compared to the true values. Fig.7 shows the resulting values when using
parameters estimated from Data-1 (See Table 1), while Fig.8 shows those resulting
from parameters estimated from Data-2 (See Table 2).
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Fig. 2: Poincar¶e section of Ueda model.

Fig. 3: True value of time-series data not containing noise.
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Fig. 4: Time-series data containing noise.

Fig. 5: Time series data of the white noise.
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Fig. 6: The power spectral density function of the white noise.

We calculated the RMSE (Root Mean Square Error) using the following equation:

RMSE =

vuut 1

N

NX

i=1

(Á̂i ¡ Ái)
2 (3.1)

Here, Ái is the true value and Á̂i stands for the estimated value. The parameters and
resulting numerical solutions are similar to the true values in the 0-20 [sec] interval
used in this estimation, for both of the calculated results estimated from Data-1 and
from Data-2.

A large error is seen near t = 18 [sec] compared to other areas when the parameters
are estimated from Data-2. See the circled area in Fig.8. This is because, in the
true value, b1 = 0:1, while b1 = 0:10154879 in the estimated value, causing a slight
overestimation. Fig. 9 shows the calculated results, when we set b1 = 0:101 and
maintain all other parameter values in Table (apart from b1) the same. We can
con¯rm that the error becomes small.

Table 1: Parameter estimates from time-series data not containing noise.

Parameter True Estimated

b1 0.1 0.09997711
c1 1.0 1.00004578
c3 1.0 1.00120546
P 60 59.96032654
! 2 2.00000000

3.2 Prediction

Fig.10 and Fig.11 show the values predicted up to 60 [sec] using the parameters
estimated from the 0-20 [sec] interval. Fig.10 shows the case where the utilized
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Fig. 7: Comparison of the true and estimated values 1. The case that parame-
ters are estimated from time-series data not containing noise. The dotted line cor-
responds to the true value and the solid line corresponds to the estimated value.
RMSE=0.00203338.

Fig. 8: Comparison of the true and estimated values 2. The case that parameters are
estimated from time-series data containing noise. The dotted line corresponds to the
true value and the solid line corresponds to the estimated value. RMSE=0.16167712
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Table 2: Parameter estimates from time-series data containing noise.

Parameter True Estimated

b1 0.1 0.10154879
c1 1.0 1.00001526
c3 1.0 0.99949645
P 60 59.96795605
! 2 1.99984741

Fig. 9: Comparison of the true and estimated values 3. The dotted line corre-
sponds to the true value and the solid line corresponds to the estimated value.
RMSE=0.03537717

parameters were estimated from Data-1, and Fig.11 shows the case where they were
estimated from Data-2. Due to the aforementioned overestimation in the attenuation
parameter b1, the prediction error becomes larger at an earlier stage for the results
using parameters derived from Data-2 than those derived from Data-1.

4 Conclusion

In the 0-20 [sec] interval used in parameter estimation, both the parameters es-
timated from Data-1 and Data-2 were close to the true values. In addition, the
numerical solutions based on the estimated parameters were also similar to the true
values. Thus, the parameter estimation method using a genetic algorithm was also
e®ective for the Du±ng equation, where the time-series data, given as solutions, are
chaotic. However, it is necessary to su±ciently examine prediction errors caused
by parameter estimation errors when making predictions based on the parameters
estimated from short intervals.
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Fig. 10: Comparison of the true and predicted values 1. The case that parame-
ters are estimated from time-series data not containing noise. The dotted line cor-
responds to the true value and the solid line corresponds to the predicted value.
RMSE=0.85898294

Fig. 11: Comparison of the true and predicted values 2. The case that parameters are
estimated from time-series data containing noise. The dotted line corresponds to the
actual value and the solid line corresponds to the predicted value. RMSE=1.47052240
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