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Abstract
As it is represented as a nonlinear equation of motion, the rolling of a ship is more
di±cult to predict than pitching and other rocking. On the other hand, because it

is heavily involved in capsizing, its quantitative analysis is important when
considering vessel stability. Therefore, this study aims to analyze the nonlinear

nature of the equation of motion that represents the rolling of a ship, in order to
gain knowledge on vessel capsize phenomena. In this study, use of the Lyapunov

spectrum enabled the extraction of the unstable behavior of the system and
facilitated the ascertaining of motion characteristics. Proof was thus obtained that
the Lyapunov spectrum's special property of quantifying trajectory instability is

useful in analyzing motion models for rolling.

1 Introduction

It is well known that in the rolling of ships, a strong nonlinearity arises between the
external force (the input, represented by waves) and rolling (the output). Due to this
nonlinearity, rolling is more di±cult to estimate than other kinds of motion, such as
pitching. That said, rolling plays a major role in capsizing, and so it is important
to analyze it quantitatively in considering the safety of ships.To gain insight into
the capsize phenomenon, this study aims to analyze the nonlinearity in equations of
motion that express ship rolling.

Some attempts have already been made to analyze modes of motion numerically or
geometrically [1, 2, 3], which include studies that analyze ship motion and the capsize
phenomenon using Lyapunov exponents and local Lyapunov exponents, which are
known for their use in chaos analysis. This indicates the usefulness of the Lyapunov
exponent in analyzing the capsize phenomenon[4]. In this paper, we will use the
Lyapunov spectrum in a Du±ng capsize model, which was also used in research by
Kan, Taguchi, et al., to examine whether the Lyapunov spectrum is also usable and
useful in simpler models.

2 Capsize model

The equation of motion expressing ship rolling is generalized in the following form,
which incorporates a nonlinear term with a negative coe±cient in the righting term:

I ¢ d
2Á

dt2
+N ¢ dÁ

dt
+W ¢GM ¢ Áf1¡ (Á=Áº)

2g = M0 +Mr cos(!t+ ±) (2.1)

where Á is the rolling angle, Áº is the angle of vanishing stability, I is the rolling
moment of inertia, N is the damping force coe±cient, Mr is the exciting force coef-
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¯cient, W is the weight of displacement, ! is the frequency of wave encounter, t is
time, and ± is the exciting force phase.

Consequently, it is possible to represent ship rolling and the capsize phenomenon
by making a mathematical model of the equation of motion, which consists of an
inertia term, a damping term, a righting term, and an exciting term.

Furthermore, given the natural rolling frequency when upright !0 = (W ¢GM=I)
1
2 ,

time s = !0t, and rolling angle Ã = Á=Áº if we make the corresponding substitutions
in Expression (2.1), we can make the equation dimensionless and simplify it as follows:

d2Ã

ds2
+ º

dÃ

ds
+ Ã ¡ Ã3 = B0 +B cos(­s+ ") (2.2)

where º = N=I!0, B0 = M0=I!0
2Áº , B = Mr=I!0

2Áº and ­ = !=!0. In this paper,
we will pay particular attention to cases where B0 = 0 or " = 0.

Expression (2.2) is a so-called soft-spring Du±ng system. It is well-known that
Du±ng equations can lead to chaos depending on their parameters and initial values,
and the Japanese attractor discovered by Ueda (Ueda's attractor) is famous [5]. A
soft-spring system can exhibit not only periodic motion and chaotic motion, but also
an "explosion of solutions," which means the dispersion of values within a limited
time. This corresponds to capsizing in a model of ship rolling.

3 Lyapunov spectrum

The Lyapunov exponent is an index that quanti¯es orbital instability. It quanti¯es
the rate of expansion according to the time evolution of the microscopic displacement
of two points that are extremely close to each other in a dynamical system. The
microscopic displacement ±xt at time t can be expressed as

±xt = ±x0 exp(¸t) (3.1)

where ¸ is the Lyapunov exponent. Note that ±x0 is the di®erence in orbit at t = 0.
Rewriting the above equation (3.1) in terms of ¸ gives us

¸ =
1

t
log

¯̄
¯̄ ±xt
±x0

¯̄
¯̄ (3.2)

Furthermore, there is one Lyapunov exponent for each dimension of the system,
and the set of these is called the Lyapnov spectrum. When one or more Lyapunov
exponents have a positive value, this indicates that the system has orbital instability.
Thus, as long as there is no noise or other probabilistic factors in the original data, the
system can be regarded as chaotic. Conversely, when the system is in quasi-periodic
motion, all Lyapunov exponents have a zero or negative value. Since whether the
values in the Lyapunov spectrum are positive or negative generally corresponds to
the behavior of the system, it is possible to estimate the characteristics of the system
by ¯nding the Lyapunov spectrum. For example, a three-dimensional dynamical
system is in quasi-periodic motion when the combination of symbols for its Lyapunov
spectrum is (0;¡;¡) and chaotic motion when the combination is (+; 0;¡).

It is di±cult to solve for Lyapunov exponents using the de¯nition in Expres-
sion (3.2). Calculators are limited in their precision, so when calculating an actual
Lyapunov spectrum, we need a way to determine the change according to the time
evolution of the microscopic displacement ±xt.
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4 Methods of estimating the Lyapunov spectrum

in known models

The calculations in this study were based on the algorithms presented in Wolf's paper
[6]. In this method, the change in the initial condition caused by the perturbation
added to the underlying model _xi = Fi(xi)(1 · i · N) is represented by linear
approximation using a Jacobian matrix J(t).

± _xi(t) = J(t)±xi(t) (4.1)

Then, by solving the di®erential equation that expresses this microscopic change,
we get the displacement vector after time ¿ , ±xi(t + ¿). As a rule, by solving Ex-
pression (4.1), we can evolve the system and measure the elongation ±xi for each
unit of time to calculate the Lyapunov spectrum. However, if we keep on calculating
±xi(t+ ¿) like this, its value will be squashed in the direction of contraction and ul-
timately become impossible to calculate, so we will use the following Gram-Schmidt
orthonormalization to prevent this:

ei(t+ ¿ ) = ±xi(t+ ¿)¡
i¡1X

j=1

h±xi(t+ ¿ ); ±x
0
j(t+ ¿)i±x0j(t+ ¿ ) (4.2)

±x
0
i(t+ ¿) =

ei(t+ ¿)

jei(t+ ¿)j (4.3)

where h ; i represent the inner product.

Based on Expression (4.2), we will orthogonalize ±xi(t+ ¿) at each unit of time ¿
to ¯nd ei(t+ ¿ ). We will then set ±x

0
i(t+ ¿ ), in which ei(t+ ¿) is normalized, as our

new vector of microscopic displacement. We can repeat this process, substituting the
ei(t) series obtained from evolving Expression (4.1) into Expression (4.4), to ¯nd the
Lyapunov spectrum.

¸i = lim
t!1

1

N¿

N¡1X

t=0

log jei(t)j (4.4)

Here, ¸i ¸ ¸i+1. For the series of numerical calculations, we used the four-dimensional
Runge-Kutta method to estimate the Lyapunov spectrum with step size ¿ = 0:01.

To ¯nd the Lyapunov spectrum from a ship capsize model, it is neccessary to
convert it to a self-excited di®erential equation and write it using three expressions.

dÃ

ds
= u

du

ds
= ¡ºu¡ Ã + Ã3 +B cos µ (4.5)

dµ

ds
= ­
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5 Results of Lyapunov spectrum analysis

The time-series waveform of the forced Du±ng equation and an example of the esti-
mated Lyapunov spectrum are shown below.

Figure 1: Chaotic motion(º = 0:4; B = 0:263;­ = 0:63)
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Figure 2: Quasi-periodic motion(º = 0:4; B = 0:261;­ = 0:63)

Figure. 1 illustrates one case where the orbit is not periodic. The set of values in
the Lyapunov spectrum is (+; 0;¡), which indicates quantitatively that the behavior
of the system is chaotic. Here, the Lyapunov dimension, a kind of fractal dimension,
is 2.092. Figure. 2, meanwhile, illustrates one case where the orbit is quasi-periodic.
All of the values in the Lyapunov spectrum are zero or negative, re°ecting the char-
acteristics of the system. One of the Lyapunov exponents did assume a positive value
in the interval up to 500 s, but this was found to re°ect the transient state of the
underlying rolling waveform.
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6 Conclusion

Through the above prosess, we were able to estimate the Lyapunov spectrum of a
Du±ng capsize model using the algorithm presented in Wolf's paper.

Chaotic behavior in a soft-spring Du±ng system is di±cult to discern through a
time-series waveform alone; it is thought that one cannot see it without representing
it on a phase plane or Poincar¶e section [2]. However, using the Lyapunov spectrum
enabled us to extract the unstable behavior exhibited by the system and made it easy
to understand the characteristics of its motion. Compared to using a phase plane
or Poincar¶e section, the Lyapunov spectrum also enables comparisons with multiple
results because it quanti¯es the shape of the valus.

For these reasons, the Lyapunov spectrum's characteristic of quantifying orbital
instability was proven to be useful in analyzing models for the rolling of ships. In
future research, we hope to use the Lyapunov spectrum to analyze the capsize phe-
nomenon.
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