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Abstract
Since Longuet-Higgins study [7], Rayleigh distribution [13] has been

used for ocean wave height analyses in a number of cases. Even if a
signi¯cant wave height is equal to or less than 2 meter, we cannot ignore
its infuence on the work on the deck of small ¯shing boats. However,
there are only few veri¯cation examples of such cases. In this study, we
estimate wave heights using power spectrum based on Longuet-Higgins
method [7] and compare them with actual values for the seakeeping of
small ¯shing boats.

While there are many studies about spectral analysis for ocean waves,
there are few studies to evaluate the wave height by the moment of spec-
tral density function. Especially, there are no studies for the di®erence
of evaluation of the wave height caused by the variant of estimation
method. There are three major methods for estimations of power spec-
tral density functions. The ¯rst one is periodgram method, the second
one is correlation function method (e.g. Blackman-Tukey method ) and
the third one is linear auto regression method (e.g. maximum entropy
method). In this paper, we compared estimate results and pointed out
problems of estimation results.

1 Introduction

It is important to estimate power spectrum density functions for understanding
characteristics of regular waves. In order to obtain their functions, it is necessary to
integrate in in¯nite ranges theoretically. However, it is actually impossible to perform
such calculations. Therefore, such power spectrum density functions are obtained
only as estimations. Presently, a number of methods are proposed for estimating
appropriate spectrum however di®erent characteristics are obtained in each method.
Therefore it is necessary to understand characteristics of the estimated power spec-
trum density functions obtained by each method. While there are many studies
about spectral analysis for ocean waves, there are few studies to evaluate the wave
height by the moment of spectral density function. Especially, there are no studies
for the di®erence of evaluation of the wave height caused by the variant of estimation
method.In this study, the authors used three major methods that are currently used
in a number of studies. The ¯rst one is Periodgram Method (P.G.M)[14, 15]. Power
spectrum density functions are obtained by direct Fourier transforms of time series
data in this method. The second one is Correlation function Method (e.g. Blackman-
Tukey method: B.T.M)[3]. Power spectrum density functions are obtained by Fourier
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transforms of autocorrelation functions in this method. The third one is a method to
estimate power spectrum density functions with a linear auto regressive model (e.g.
Maximum Entropy Method: MEM)[1, 4]. The authors estimated mean wave periods,
mean wave heights, signi¯cant wave heights and one tenth maximum wave heights
using moments of power spectrum density functions for the sea surface displacement
in Tokyo Bay that are estimated by these methods and compared and veri¯ed those
results and measurement values [9, 10]. From the results, we have obtained the
advantages and disadvantages of each method, and discuss the details of them.

2 Analysis Data

Time series data of the sea surface displacements used in this study were measured
in Tokyo Bay from 1997 to 2007. One measurement time length was 819.2[sec] and
a sampling period was 0.1[sec] (see Fig.2.1). We extracted frequency components
over 0.1[Hz] and below 1.0[Hz] to remove high frequency noise components with a
band-pass ¯lter (see Fig.A.1 in Appendix 1).

Data used in this study are irregular waves. Therefore, it is necessary to de¯ne wave
heights in some form. In this study, the authors use Zero-up Crossing Method to
de¯ne wave heights. In this method, as shown in Fig.A.2(see Appendix 1), one wave
is de¯ned as an interval between the two points that cross with mean position where
the water levels are elevated. The di®erence between the maximum and minimum
values in the period is de¯ned as a wave height in the interval.

Fig.2.1 Time Series Data of Sea Surface Displacement (Example)
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3 Estimation of Power Spectrum Density Func-

tion

3.1 PGM:Periodgram Method [14, 15]

In Periodgram Method, Fourier transforms are performed for time series data to ob-
tain to power spectrum density functions. The Fourier transform Y (f) of continuous
data y(t) is obtained by the equation below.

Y (f) =

Z 1

¡1
y(t)e¡2¼iftdt (1)

On the other hand, in this paper, the Fourier transform Yk of the time series data yn
discretely measured with the sampling period ±t is de¯ned by the equation below.

Yk =
NX

n=1

yne
¡2¼ifkn±t±t = ±t

NX

n=1

yne
¡ 2¼ikn

N ; fk =
k

N±t
; k = 0; 1; ¢ ¢ ¢ ; N (2)

Here, N is the total number of data. Moreover, in ¡fN 5 fk 5 fN ; fN = 1
2±t

is
Nyquist frequency. The periodgram SE(fk) at this time is below

SE(fk) = jYkj2 (3)

The two-sided power spectrum density function S 0P (fk) is expressed as:

S 0P (fk) =
1

N±t
jYkj2 =

1

N±t
SE(fk) (4)

Moreover, the one-sided power spectrum density function SP (fk) is obtained by dou-
bling the two-sided power spectrum density function S 0P (fk).

SP (fk) = 2S 0P (fk) =
2

N±t
jYkj2 =

2

N±t
SE(fk) (5)

Positive frequencies are used in ordinary analyses, and therefore discussions in this
paper are proceeded with the assumption that the power spectrum density function
obtained in PGM is a one-sided power spectrum density function. Fig.3.1 shows
an example of the power spectrum density function obtained by the direct method
(PGM).
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Fig.3.1 Example of Power Spectrum Density
Function(PGM) of Sea Surface Displacement

3.2 Correlation Function Method
(BTM:Blackman-Tukey Method)[3]

In this method, the autocorrelation function R(¿ ) is calculated and then a Fourier
transform is performed for it to estimate the power spectrum density function Sp(!).
This method is based on the Wiener-Khintchine theorem shown below. An angular
frequency !(= 2¼f) is used for simpli¯cation of the calculations

F[R(¿ )] =

Z 1

¡1
R(¿ )e¡i!¿d¿ =

Z 1

¡1

(
lim
T!1

1

T

Z T
2

¡T
2

y(t)y(t+ ¿)dt

)
e¡i!¿d¿ = SP (!)

In this way, a Fourier transformed autocorrelation function is a power spectrum
density function and an inverse Fourier transformed power spectrum density function
is an autocorrelation function.

In Blackman-Tukey method, which is one of the correlation function methods, an
estimation is performed for the data actually obtained based on this relation as below.

The frequency range is assumed ¡fN 5 f 5 fN so as to avoid e®ect of aliasing.
Here, fN is Nyquist frequency and fN = 1

2Mt . M t is a sampling period. Assuming
the maximum lag is m, M f = 1

2mMt therefore fk = k M f = k
2mMt . A power spectrum

density function is estimated with the following equation.

~SP (fk) = ~SP

µ
kfN
m

¶

=

(
~R(0) + 2

m¡1X

i=1

~R(i M t) cos

µ
ki¼

m

¶
+ ~R(m M t) cos(k¼)

)
M t (6)
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A Fourier cosine transform is applied for (6) because the autocorrelation function is
an even function. Fig.3.2 shows an example of the power spectrum density function
obtained by BTM.

Fig.3.2 Example of Power Spectrum Density
Function(BTM) of Sea Surface Displacement

3.3 Linear Auto Regression Method
(MEM:Maximum Entropy Method) [1, 4]

Here, we assume that time series data y(t)(yi = y(i M t)) are presumably expressed
in a discrete form as below.

yn = a1yn¡1 + a2yn¡2 + ¢ ¢ ¢+ amyn¡m + vn (7)

Here, m is an order of the autoregressive model, ai is an autoregression coe±cient
and vn is white noise independent from the past of yn for which the mean value is 0
and the variance is ¾2

m.
Assuming that the time series data are based on the autoregressive model expressed

by Equation (7), the autocorrelation function Rk(= R(k M t)) is theoretically derived
as follows.
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Rk = R(k M t) = E[ynyn¡k]

= E

"Ã
mX

j=1

ajyn¡j + vn

!
yn¡k

#

=
mX

j=1

ajE[yn¡jyn¡k] + E[vnyn¡k] (8)

Here, from the assumption that vn is independent from the past of vn, E[vnyn¡k] = 0
for k > 0. Moreover, E[vnyn] = ¾2

m. Therefore, following relations are obtained for
the autocorrelation function.

R0 = R(0) =
mX

j=1

ajRj + ¾2
m (9)

Rk = R(k M t) =
mX

j=1

ajRj¡k (k = 1; 2; ¢ ¢ ¢ ) (10)

This is the Yule-Walker's equation [17, 16]. When an autoregressive model of Equa-
tion (7) is given, aj and ¾2

m are determined. Therefore, an autocorrelation function
is obtained by solving Equations (9) and (10) for Rk. A power spectrum density
function is given by the following equation then.

SP (f) =
¾2
m¯̄

¯̄
¯1¡

mX

j=1

aje
¡2¼ifj

¯̄
¯̄
¯

2 (11)

For the estimation of the order m, it is proposed to select a method for which
AIC(Akaike's Information Criterion)[2]

expressed by the following equation is minimum.

AIC(m) = N log(2¼¾2
m) +N + (2m+ 1) (12)

Here, N is the total number of data. Moreover, it is proposed to maintain the range
m < (2 » 3)

p
N so that m with the minimum AIC cannot be great [8].

When estimating an autoregression coe±cient by the least squares method, co-
e±cients (a1; a2; ¢ ¢ ¢ ; am) that minimize the residual sum of squares expressed by
Equation (13) are obtained by solving the simultaneous equation (14).

S =
NX

i=m+1

(yi ¡ a1yi¡1 ¡ a2yi¡2 ¡ ¢ ¢ ¢ ¡ amyi¡m)2 (13)
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@S

@aj
= 0 (j = 1; ¢ ¢ ¢ ;m) (14)

However, it takes extremely long time to calculate AIC and estimate an optimal
order by this method. Therefore, in this study, the authors estimate coe±cients by
Levinson's recurring formula [11] below.

0
BBBBBBBBBBBB@

¡1
a1(m)
a2(m)

...
ak(m)

...

...
am(m)

1
CCCCCCCCCCCCA

=

0
BBBBBBBBBBB@

¡1
a1(m¡ 1)
a2(m¡ 1)

...
ak(m¡ 1)

...
am¡1(m¡ 1)

0

1
CCCCCCCCCCCA

¡ am(m)

0
BBBBBBBBBBB@

0
am¡1(m¡ 1)
am¡2(m¡ 1)

...
am¡k(m¡ 1)

...
a1(m¡ 1)

¡1

1
CCCCCCCCCCCA

(15)

Here, ak(m) indicates ak in the case that an order of an autoregressive model is m.
Fig.3.3 shows an example of the power spectrum density function obtained from the
maximum entropy method (MEM).

Fig.3.3 Example of Power Spectrum Density
Function(MEM) of Sea Surface Displacement

4 Evaluation Method

4.1 Moment of Power Spectrum Density Function

n order moment of a power spectrum density function is de¯ned as the following
equation[12].
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mn =

Z 1

0

!nSP (!)d! (16)

For the data that mean value is zero in particular, it is expressed as follows.

m0 =

Z 1

0

SP (!)d! = ¾2 (17)

4.2 Derivation of Mean Wave Period De¯ned by Zero Up
Cross Method with Moment of Power Spectrum Density
Function

A square value of the average angular frequency de¯ned by the zero up crossing
method with a moment of the spectral density function de¯ned above is expressed as
follows.

¹!2 =

Z 1

0

!2S(!)d!
Z 1

0

S(!)d!

=
m2

m0

(18)

Therefore, mean wave period ¹T is expressed as follows.

¹T =
2¼

¹!
= 2¼

r
m0

m2

(19)

4.3 1=n Maximum Wave Height in the Case that Rayleigh
Distribution is Assumed[13, 7, 12]

We assume a Rayleigh probability density function for wave amplitudes [7, 12] and
consider the case that the following equation is assumed.

P [x > x1=n] =

Z 1

x1=n

p(x)dx =

Z 1

x1=n

x

m0

e
¡ x2

2m0 dx =
1

n
(20)

 

In this case, x1=n is obtained from the following equation.

x2
1=n = 2m0 loge n (21)

x1=n =
p

2m0 loge n (22)

The 1=n maximum wave amplitude ¹x1=n is the x-coordinate of the gravity center of
the shaded area. Therefore, it is obtained by dividing the ¯rst-order moment by the
zero-order moment.(see Appendix 3 )
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Fig.3.2 Rayleigh Distribution and 1/n Maximum
Wave Amplitude

¹H1=n ; 2¹x1=n = 2
p

2m0[
p

loge n+
n
p
¼

2
f1¡ erf(

p
loge n)g] (23)

From the above, when presuming that wave heights of ocean waves are in depen-
dence upon Rayleigh distributions, in the above calculation, the 1=n maximum wave
height ¹H1=n(; 2¹x1=n) is estimated from the ¯rst-order moment and the zero-order
moment of a power spectrum density function. For an approximate calculation of an
error function, we used approximate equations of Cody[5] and Hasting[6].

In this study, the authors compare and verify the estimated values obtained from
power spectrum density functions with statistics of measured signi¯cant wave heights
and discuss the validity.

5 Result and Discussion

5.1 Estimated Result of Mean Wave Period

Figures 5.1-5.3 show mean value of wave periods estimated from measurement
values of mean wave periods and power spectrum density functions and compare
them with scatter diagrams. Results are shown in the order of PGM, BTM and
MEM (the following data are shown in the same manner). The solid line in the ¯gure
is a regression line of observed values and estimated values and the dotted line is a
linear line of y = x (following data are shown in the same manner). In the range
shorter than 3[sec], observed values and estimated values agree well with each other
for 3 cases. However, estimated values tended to be below observed values longer
than 3.0[sec]. In this experimental study, we can not ¯nd signi¯cant di®erences due
to the estimation method with power spectrum density functions.

5.2 Estimation Result of Mean Value of Wave Height

Figures 5.4-5.6 show mean values of observed wave heights and those estimated
from power spectrum density functions and compare them with scatter diagrams. An
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estimated result by PGM agreed well with the observed values. However, when we
evaluated entire errors by Root Mean Square Error (RMSE), we ¯nd that estimated
results obtained by MEM are best result. In the estimated results obtained by BTM,
results are underestimated by 10% for all data comparing with other methods and,
moreover, agreement levels are low and RMSE is large.

Fig.5.1 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (PGM) for Mean Value of Wave Period

Fig.5.2 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (BTM) for Mean Value of Wave Period
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Fig.5.3 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (MEM) for Mean Value of Wave Period

Fig.5.4 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (PGM) for Mean Value of Wave Height
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Fig.5.5 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (BTM) for Mean Value of Wave Height

Fig.5.6 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (MEM) for Mean Value of Wave Height

5.3 Estimation Result of Signi¯cant Wave Height

Figures 5.7-5.9 show observed values of signi¯cant wave heights and those esti-
mated from power spectrum density functions and compare them with scatter dia-
grams.
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Fig.5.7 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (PGM) for Signi¯cant Wave Height

Fig.5.8 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (BTM) for Signi¯cant Wave Height
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Fig.5.9 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (MEM) for Signi¯cant Wave Height

Fig.5.10 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (PGM) for 1=10 Maximum Wave Height

5.4 Estimation Result of 1/10 Maximum Wave Height

Finally, Figures 5.10-5.12 show observed values of 1/10 maximum wave heights
and those estimated from power spectrum density functions and compare them with
scatter diagrams. The agreement is not so good in comparison with both cases of
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mean wave heights and signi¯cant wave heights for all data. RMSE are also greater
than the other two cases. This is because the number of waves is fewer than that for
both calculations of mean wave heights and signi¯cant wave heights. Moreover,in all
3 cases, estimated values in BTM tended to be underestimated for all data.

Fig.5.11 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (BTM) for 1=10 Maximum Wave Height

Fig.5.12 Comparison between Observed Value
and Estimated Value by Power Spectrum Density
Functions (MEM) for 1=10 Maximum Wave Height
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6 Conclusion

In the estimation of mean wave periods, the authors do not recognize signi¯cant
di®erences due to the di®erence of calculation methods for power spectrum density
functions. Estimated results obtained by PGM are greater by 4% in mean wave
heights, 3% in signi¯cant wave heights and 1% in 1/10 maximum wave heights than
observed values however those di®erences are acceptable for practical use, we suppose.
BTM tends to underestimate by approximately 10% therefore it is necessary to be
careful for using this method. Therefore, the authors presume that PGM and MEM
are better than BTM for estimations of wave heights. We may have some assumptions
about underestimation by BTM. The ¯rst one is that the frequency resolution of BTM
is inferior to two other methods. Namely, the accuracy of approximate calculation
of moments is inferior to two other methods. The second one BTM is based on
cosine transformation. Therefore, BTM has a possibility to estimate negative values.
Therefore, when we use BTM we need care. Actual phenomena contain a number of
uncertainties, however, wave height distributions of ocean waves might be not fairly
modeled by the Rayleigh distribution. In this paper, we analyzed the case that the
signi¯cant wave height was smaller than 1m. However, we are also interest in the
case that the signi¯cant wave height is larger than 1m. If we have such data, we will
analyze them.
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Appendix 1. Filtering and De¯nition of Wave Height
We extracted frequency components over 0.1[Hz] and below 1.0[Hz] to remove

high frequency noise components with a band-pass ¯lter (see Fig.A.1).

Fig.A.1 Comparison between the Data of Actual
Measurement Value and the Data that Passed Filter
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In this study, the authors use Zero-up Crossing Method to de¯ne wave heights. In
this method, as shown in Fig.A.2, one wave is de¯ned as an interval between the two
points that cross with mean value positions on the parts where the water levels are
elevated. The di®erence between the maximum and minimum values in the period is
de¯ned as a wave height in the interval.

Fig.A.2 De¯nition of Zero-up Crossing Method

Appendix 2. Wiener-Khintchine Theorem

F[R(¿ )] =

Z 1

¡1
R(¿ )e¡i!¿d¿ =

Z 1

¡1

(
lim
T!1

1

T

Z T
2

¡T
2

y(t)y(t+ ¿)dt

)
e¡i!¿d¿

= lim
T!1

1

T

Z 1

¡1

½Z 1

¡1
y(t)y(t+ ¿ )dt

¾
e¡i!¿d¿

= lim
T!1

1

T

Z 1

¡1
y(t)

½Z 1

¡1
y(t+ ¿)e¡i!¿d¿

¾
dt

= lim
T!1

1

T

Z 1

¡1
y(t)

½Z 1

¡1
y(t+ ¿)e¡i!(t+¿)ei!td¿

¾
dt

= lim
T!1

1

T

Z 1

¡1
y(t)

½Z 1

¡1
y(s)e¡i!sds

¾
ei!tdt

= lim
T!1

1

T

Z 1

¡1
y(t)Y (!)ei!tdt = lim

T!1

1

T
Y (!)

Z 1

¡1
y(t)e¡i(¡!)tdt

= lim
T!1

1

T
Y (!)Y (¡!) = lim

T!1
1

T
Y (!)Y ¤(!) = lim

T!1
1

T
jY (!)j2 = SP (!)

Here, * is a complex conjugate.
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Appendix 3. 1/n Maximum Wave Height

¹x1=n =

Z 1

x1=n

xp(x)dx

Z 1

x1=n

p(x)dx

=

Z 1

x1=n

xp(x)dx

1

n

= n

Z 1

x1=n

xp(x)dx

= n

Z 1

x1=n

x2

m0

e
¡ x2

2m0 dx

= n

Z 1

x1=n

x(¡e¡
x2

2m0 )
0
dx

= n

·
¡xe¡

x2

2m0

¸1
p

2m0 loge n

+ n

Z 1
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e
¡ x2

2m0 dx
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2m0 loge n ¢
1

n
+ n
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loge n

e¡t
2

(
p

2m0dt)
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p

2m0 loge n+ n
p

2m0 ¢
p
¼

2
(

2p
¼

Z 1

0

e¡t
2

dt¡ 2p
¼

Z ploge n

0

e¡t
2

dt)

=
p

2m0 loge n+ n
p

2m0 ¢
p
¼

2
f1¡ erf(

p
loge n)g

=
p

2m0[
p

loge n+
n
p
¼

2
f1¡ erf(

p
loge n)g] ; 1

2
¹H1=n
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